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This paper aims at decreasing execution time for
large-scale structured adaptive mesh refinement (SAMR)
applications by proposing a heuristic re-mapping al-
gorithm and experimentally showing its effectiveness
in reducing inter-level communication for five applica-
tions. The overall goal is a dynamically adaptive meta-
partitioner capable of selecting and configuring the most
appropriate partitioning strategy based on current sys-
tem and application state. The meta-partitioner can sig-
nificantly reduce execution times for SAMR applications.

Computer simulations are often based on solving par-
tial differential equations by numerical methods. Adap-
tive methods are crucial to efficiently use computer re-
sources. But even with adaptation, the simulations are
computationally demanding and yield huge data sets.
Parallelization and efficient data partitioning are neces-
sary. Adaptation causes the workload to change dynam-
ically, calling for dynamic (re-) partitioning to maintain
efficient resource utilization.

The proposed algorithm reduced inter-level commu-
nication substantially. Since the complexity of the algo-
rithm is low, this decrease was relatively inexpensive. We
draw the conclusion that the algorithm could lower over-
all execution times for many large SAMR applications,
and that, due to its parameterization, it would constitute
a natural component of the meta-partitioner.

Keywords: Dynamic load balancing, structured
adaptive mesh refinement, meta-partitioner, run-time
management, communication cost.

1 Introduction

This paper presents a heuristic re-mapping algorithm
for the built-in partitioning techniques in Nature+Fable
[34], and experimentally shows the effectiveness of this

algorithm in reducing inter-level communication for five
vastly different structured adaptive mesh (SAMR) ap-
plications. Particular attention will be paid to simulat-
ing the Richtmyer-Meshkov instabilities using an explicit
time-stepping and a finite volume scheme.

The presented work is part of an ongoing research
project [33, 34, 35, 9] with the overall goal of engineer-
ing a dynamically adaptive meta-partitioner for SAMR
grid hierarchies capable of selecting the most appropriate
partitioning strategy at runtime based on current system
and application state. Such a meta-partitioner can signif-
icantly reduce the execution time of SAMR applications
[12, 10].

Methods based on SAMR for the numerical solution
to partial differential equations (PDEs) [6, 7, 30] employ
locally optimal approximations, and can yield highly ad-
vantageous ratios for cost/accuracy when compared to
methods based on a static uniform mesh. These meth-
ods are being effectively used in many domains, includ-
ing computational fluid dynamics [2, 5, 27], numerical
relativity [13, 29], astrophysics [1, 8, 22], and subsur-
face modeling and oil reservoir simulation [41, 24]. These
techniques start with a coarse base grid with minimum
acceptable resolution that covers the entire computa-
tional domain. As the solution progresses, regions in the
domain with large solution error, requiring additional res-
olution, are identified and refined. Refinement proceeds
recursively so that the refined regions requiring higher
resolution are similarly tagged and even finer grids are
overlaid on these regions. The resulting grid structure is
a dynamic adaptive grid hierarchy.

The primary motivation for our research is that no
single partitioning scheme performs the best for all types
of SAMR applications and computer systems. For a given
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application, the most suitable partitioning technique de-
pends on input parameters and the application’s runtime
state [28, 34]. This means sometimes focusing on opti-
mizing load balance, and sometimes focusing on lowering
the interprocessor communication costs. This necessi-
tates adaptive management of these applications at run-
time. This includes using application runtime state to
select and configure the partitioning strategy to balance
load, optimize communication and synchronization, min-
imize data migration costs, and maximize grid quality
(e.g. aspect ratio) and available parallelism. The goal of
the adaptive meta-partitioner is to provide such a capa-
bility for parallel SAMR applications. A means to ex-
plicitly attack the amount of inter-level communication
is crucial to the adaptive meta-partitioner.

Partitioners for SAMR grid hierarchies can be classi-
fied as patch-based [4, 18], domain-based [23, 28, 37, 33|,
or hybrid [37, 19, 34].

Nature+Fable (Natural Regions + Fractional
blocking and bi-level partitioning) [34] aims to be the
best possible tool for partitioning SAMR grid hierarchies.
It hosts a variety of hybrid partitioning options. All
involved parts are engineered to be components of the
meta-partitioner. They offer carefully designed param-
eters to steer component behavior enabling adaptation
to varying partitioning requirements. As Nature+Fable
matures, it is intended to transform into the meta-
partitioner.

In this paper, we move towards the meta-partitioner
by introducing a key component; a means for lower-
ing the inter-level communication costs for SAMR ap-
plications. The key contributions are (1) a mathemati-
cal estimation of the compute and communication costs
of SAMR simulations based on the common “time re-
finement” technique, (2) a fine-scale case-study of the
Richtmyer-Meshkov instability, breaking down the com-
munication amount into components, (3) a new, param-
eterized heuristic re-mapping algorithm that attempts to
solve the problem posed above and is designed to oper-
ate as a component of the meta-partitioner, and (4) an
experimental evaluation of this algorithm showing its ef-
fectiveness to reduce inter-level communication on five
vastly different SAMR applications.

2 SAMR and Related Work

In SAMR methods, dynamic adaptation is achieved by
tracking regions in the domain that require higher res-
olution and dynamically overlaying finer grids on these
regions. These techniques start with a coarse base grid
with minimum acceptable resolution that covers the en-
tire computational domain. As the solution progresses,
regions in the domain with large solution error, requir-
ing additional resolution, are identified and refined. Re-
finement proceeds recursively so that the refined regions
requiring higher resolution are similarly tagged and even

finer grids are overlaid on these regions. The resulting
grid structure is a dynamic adaptive grid hierarchy.

Existing software infrastructures include Paramesh
[20, 21], a FORTRAN library for parallelization of and
adding adaption to existing serial structured grid com-
putations, SAMRAI [17, 42] a C++ object-oriented
framework for implementing parallel structured adap-
tive mesh refinement simulations, and GrACE [25] and
CHOMBO|?], both of which are adaptive computational
and data-management engines for enabling distributed
adaptive mesh-refinement computations on structured
grids.

Parallel implementations of SAMR methods present
interesting challenges in dynamic resource allocation
since the overall efficiency is limited by the ability to
partition the underlying grid hierarchies at runtime to
expose all inherent parallelism, minimize communica-
tion and synchronization overheads, and balance load.
A critical requirement when partitioning these adaptive
grid hierarchies is the maintenance of logical locality,
both across different levels of the hierarchy under ex-
pansion and contraction of the adaptive grid structure,
and within partitions of grids at all levels when they are
decomposed and mapped across processors. The former
enables efficient computational access to the grids and
minimizes the parent-child (inter-level) communication
overheads, while the latter minimizes overall communi-
cation and synchronization overheads. Furthermore, ap-
plication adaptation results in grids being dynamically
created, moved and deleted at runtime, making it neces-
sary to efficiently repartition the hierarchy “on the fly”
so that it continues to meet these goals.

Partitioners for SAMR grid hierarchies can be classi-
fied as patch-based, domain-based, or hybrid [34].

Nature+Fable (Natural Regions 4 Fractional
blocking and bi-level partitioning) [34] aims to be the
best possible tool for partitioning SAMR grid hierarchies.
It hosts a variety of hybrid partitioning options. All
involved parts are engineered to be components of the
meta-partitioner. They offer carefully designed param-
eters to steer component behavior enabling adaptation
to varying partitioning requirements. As Nature+Fable
matures, it is intended to transform into the meta-
partitioner.

3 A Heuristic Algorithm for Re-
ducing Inter-Level Communica-
tion

The bi-level partitioning approach is appealing, since [34]
(1) it has a strong rationale, and (2) it exhibits promising
experimental results. We start this section by construct-
ing a mathematical model of the compute and communi-
cation costs of an SAMR application and motivating the
need to redistribute patches as bi-levels because of inter-



level communication costs. This is then highlighted by a
case-study of the Richtmeyer-Meshkow instability. The
case-study establishes that even with the bi-level parti-
tioning approach, there is need to explicitly attack inter-
level communication costs. This section then outlines
the inherent complexity in all re-mapping techniques and
concludes by presenting our heuristic re-mapping algo-
rithm.

3.1 Analytical Model

Compute and communication loads in SAMR applica-
tions are tightly coupled with the numerical simulation
algorithm. Most common algorithms are based on the
“time refinement” approach [6] and consist of a series of
identical processes called “time-steps”’ ; each time-step
usually ends with a global reduction or some other oper-
ation that effectively synchronizes the processors. Within
a time-step, patches are subjected to various numerical
operations. If patches are refined by a factor of R, these
numerical operations are done R times. Further, these
operations proceed from the coarsest mesh to the finest
in a recursive manner i.e., Go, G1,G2,G2,G1,G2, G for a 3
level grid hierarchy with R = 2. G; refers to the set of all
patches on level [. Communications (ghost cell updates)
are done after each of these numerical operations and
follow the same pattern. At the culmination of the pro-
cessing of each level, data is interpolated from the finer
children patches onto the coarser parents.

Consider a 2D domain distributed over a number
of processors after being subjected to a purely domain-
based decomposition. Let a sub-domain on a processor
have Ny grid points on the coarsest level. Let a fraction of
this coarse level be refined into level 1 patches, contained
in the set G;. Thus, the number of grid pomts in Gy,
(i-e., the load associated with G;) is £; = 25\40 afNoR
where M; is the number of patches in G; and ozZ is the
fraction of the sub-domain that exists in patch i on level
l. Patches on a level are indexed from 0 to M; — 1. Let
Gy be recursively refined into Ga,Gs, . . ..

Let L denote the index of the finest level. During a
time-step, the compute load Teopmp is

tcomp(EO + REI + R2£2 + .. ) (1)
L M;—1
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= =0
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where teomp is the computation time / load of a unit
operation.

Let us assume that patches are roughly square and
that the number of “ghost cells” or “guard cells” per patch
o y/alNoR!. Since the intra-level communication fol-

lows a similar pattern as the computation,

L M;—-1
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where t.omm iS a unit communication time and ﬂﬁ is the
fraction of the perimeter of patch G ; that abuts another
patch on the same level but in a different sub-domain
(and thus requires communication time to get updated).
The fraction of patch a G;; that abuts another patch on
the same level i but on the same processor incur the cost
of memory copies. This cost is relatively low and is thus
ignored.

At a given level, data is interpolated from children
patches to the parent at the end of each numerical op-
eration. If ¢;pserp is the unit interpolation cost, then the
total time spent in interpolation, Tipterp, 1S
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Note that Tjpserp is entirely computational in a purely
domain-based partitioning — since the child and parent
reside on the same processor, these interpolated values
do not have to be transported over a network and conse-
quently they do not incur a communication cost.

Thus, the total time for an arbitrary processor to ex-
ecute a time-step, Tiotal, iS

Oéé-{_lNoRH_l (3)

T’interp =

Ttotal = Tcomp + Tinterp + Tcomm + twaz’t (4)

where t,4;; is the wait induced by load-imbalance
amongst processors. In the following, we assume that the
amount of intra-level communication is relatively small
and could hence be neglected. We will now attempt to
reduce t,,44 by redistributing patches.

In the patch-based Strategy 1, we move an arbitrary
patch Gj; from a processor with t,,; = 0 to another
with maximum t,,4; i.e., the least loaded one. We ignore
the migration cost, since this is incurred once and focus
on the effect on performance.

We gain savings on compute 7,,,, and interpolation

Tinterp l0ads for the patch i. At the same time, we in-
troduce the cost of inter-level communication, i.e., the
cost of bringing back the interpolated data from the off-
processor patch: alNo R~ omm.

Let v denote the fraction of this communication time
that could not be overlapped with computation. Then,
the load change on the sending processor Atgeng is

Atgena = _Tclomp znterp +77, comm (5)

= —OééNoR teomp — aiN0R2l+1tinterp
+a§NOR21_17tcomm
= O‘i’NORﬂ_l(’thomm -

tinterp - thomp) -



Thus, the requirement for Atgeng < 0 is

Wtcomm < tinterp + thomp- (6)

Given the fast processors of today, tinterp and teomp
are far smaller than t.om, (usually an order of magni-
tude) and unless one achieves a high degree of overlap
(v = 0) the sending processor might actually end up tak-
ing more time as a consequence of the data movement,
i.e., Atgeng > 0. The conclusion is that Strategy 1 has
its inherent shortcomings.

The obvious way to render Atgeng < 0 is to increase
the savings in compute and interpolations costs while
keeping the communication overhead unchanged. Con-
sequently, in the level-clustering approach in Strategy 2,
we consider the case of moving all patches above level
“q” off-processor in an effort to reduce T;,¢q;- This leaves
the original processor with levels 0 to ¢ along with a re-
quirement of bring back interpolated values from the off-
processor Ggy1. Thus the change of load on the sending
processor Atg.nq can be calculated as the cost incurred
in bringing back interpolated data from G, i minus the
compute and interpolate savings due to removal of all
patches in Ggy1,Gg42,- .., ie,
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The ZlL: ot Zf\i’o_l above sums up the contributions of
Go+1>G9q¢+2, ... as does ng,m”. By choosing a value
of g, i.e., deciding at which level to truncate the grid
hierarchy, Atgenq could be made negative.

The conclusion is that by migrating a parent-child
pair as a unit, we reap the benefit of relieving the send-
ing processor of substantial computational and interpo-
lation costs while incurring the (smaller) communication
cost of transferring the interpolated values back to the
source processor. If this reduction of load on the sending
processor is excessive i.e., the least loaded processor now
becomes the bottleneck, then the bi-level could be parti-
tioned and one of the partitions moved. This approach
is used in Nature+Fable.

3.2 Richtmyer-Meshkow Instability

Despite the bi-level partitioning approach, the inter-
level component can for some applications account for

about 80 percent of the total communication costs. Fig-
ure 1 (left) displays a communication break-down for
the Richtmyer-Meshkow instability with 5 levels of re-
finement for 100 time-steps, partitioned by the tool
Nature+Fable. This example indicates that ways of at-
tacking this component explicitly is imperative.

Nature+Fable clusters levels in pairs, called bi-levels.
Within these bi-levels there is no inter-level communica-
tion, since they are partitioned in a strictly domain-based
fashion. Nevertheless, inter-level communication may oc-
cur in between two bi-level partitions (that is, the top
layer of the lower one, and the bottom layer of the upper
one), if they are not mapped onto the same processor.

Bi-levels are mapped onto processors using a partially
ordered space-filling curve (SFC). In practice, if the re-
finements on the higher levels have the same shape and
size as on the lower levels, the ordering scheme will in
many cases map parent and children onto the same pro-
cessor. The problem with the SFC mapping occurs when
the shape and size of the higher refinement levels differs
from that of the lower levels. The result can look like an
arbitrary mapping, with few cases of parent/child boxes
residing on the same processor. Our proposed algorithm
is a remedy for bad default SFC mappings.

3.3 Re-Mapping Complexity
First, some necessary definitions.

Definition 3.1. A list of boxes is a set of boxes where
each box has a processor assignment.

Definition 3.2. A partition is the subset of a set of boxes
containing all boxes with the same processor assignment.

Definition 3.3. A re-mapping is a permutation of the
processor assignments for a set of partitions. Partitions
are therefore regarded as atomic by the re-mapping.

Given these definitions, the re-mapping scheme can
never manipulate individual boxes. The load balance will
be unaffected by any re-mapping.

The greatest concern for all Nature+Fable algorithms
besides their primary functionality is speed. All algo-
rithms should have low complexity and operate on simple
data structures. We now discuss the inherent complexity
of the re-mapping problem.

Consider two sets of partitions, both having the same
number of partitions and the same processor span. Let
one of these sets belong to refinement level [ + 1 and
the other to level [ + 2 and place them “on top” of each
other as illustrated by Figure 1 (right). The processor
assignments will now dictate the amount of inter-level
communication.

For simplicity, assume there is exactly one box per
processor and that there are n boxes (and processors).
Finding the optimal solution (trying and evaluating each)
require n! steps. This is unacceptable. Moreover, most
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Figure 1: Left: Communication breakdown for RM2D application with 5 levels of refinements. Blue is multiple
blocking and red is fractional blocking. P = 16 and k = Q = 4. Right: The re-mapping problem. Note how a
permutation of processor assignments for the partitions would decrease the amount of inter-level communication.
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Figure 2: Left: The Union scheme. Note how a bounding box around each partition is created and set to represent
its partition. Right: A successful mapping of the example (not considering the migration problem).

often there will be a set of boxes in each partitioning.
Evaluating an assignment permutation will involve sub-
stantial computational cost (checking each box for possi-
ble overlap with other boxes). Consequently, we conclude
that innovative heuristics are imperative.

3.4 Re-Mapping Algorithms

We build our algorithms on some facts and experience,
viz: a) Since most work is done at the higher refine-
ment levels, we let the top bi-level be untouched. We
recursively move down the refinement levels and attack
bi-level by bi-level, b) The partially ordered SFC map-
ping is probably a good initial guess to an acceptable
solution. We take advantage of this (do not start from
scratch), which lowers the complexity substantially, c)
Greedy approaches are often successfully used in parti-
tioning contexts. We use a greedy approach for processor
re-assigningment.

Our algorithm is composed of three steps, viz. (1)
Linearizing/approximation, and (2) Removing “good-
enough” partitions in the default mappings, and (3) Re-
mapping of the remaining partitions. The first two steps
strives to reduce the data volume and algorithm com-
plexity. The overall complexity is O(m?) where m is the

number of remaining items in the list of boxes after the
first two steps. The three steps will be described in the
following sections.

3.4.1 Linearizing/Approximation

To avoid costly evaluation and non-linear, highly complex
data structures (e.g. arrays of lists of boxes), the first step
creates the simpler scenario where each partition consists
of exactly one box. For each partition, one box will rep-
resent (or approximate) its partition. Depending on the
given partitioning scenario, different strategies are use-
ful. We propose two schemes for creating approximating
boxes:

e Union. This is used when multiple blocking is used.
A bounding box around all the partition’s boxes (a
box-union of them) approximates the partition as
illustrated by Figure 2 (left).

e Largest. This is used when fractional blocking is
used. Union will not approximate the partition
when processors are assigned more than one box
(most processor are assigned exactly one box).The
set of boxes may be spatially spread out over the
computational domain. A bounding box will give



little information about the partition. We propose
to to represent/approximate the partition with its
largest box.

The complexity for both strategies are linear in the
number of approximating boxes in either of the lists.

3.4.2 Removing “Good-Enough” Pairs

It is not feasible to search for an optimal solution (it
is not even clear what “optimal” means at this point)
even for this simplified case established by the lineariza-
tion/approximation. We further lower the complexity by
acknowledging that the default SFC mapping probably
is a good initial guess to a high-quality solution. Given
this, we can reduce the required work by reducing the
size of the input. We remove pairs of partitions that as a
result of the default mapping are already “good-enough”.

Consider two lists A and B of approximating boxes
representing partitions on level [ + 1 and level [ + 2 as
in the example above. Let threshold € [0,100]. Intersect
the boxes in list A with its counterpart in list B and re-
move all pairs with an intersection volume greater than
threshold percent of the box in A. The deleted pairs are
regarded as having a good-enough mapping and will not
be considered further.

The complexity for this step is linear in the number
of approximating boxes in either of the lists.

3.4.3 Re-Mapping of Approximating Boxes

We use a greedy approach to re-map the partitions re-
maining in list A and B efter the previous algorithmic
steps. We start with the first box in list A, and inter-
sect it with all boxes in list B. The greatest intersection
volume is considered the best choice, and the box in A
is greedily assigned to the processor of the matching box
in B. If no best choice was found, we assign it to the
processor of the first box in B. Last, we remove the cor-
responding box from B. We then continue with the rest
of the boxes in A. This algorithm is quadratic in the
number of remaining list items.

A successtul re-mapping (not considering the data mi-
gration problem) of the example above is illustrated in
Figure 2 (right).

4 Methods — Experimental Setup

A suite of 5 “real-world” SAMR application kernels taken
from varied scientific and engineering domains are used
to evaluate the effectivness of the heuristic algorithm to
reduce communication. These applications demonstrate
different runtime behavior and adaptation patterns. Ap-
plication domains include numerical relativity (Scalar-
wave), oil reservoir simulations (Buckley-Leverette), and
computational fluid dynamics (compressible turbulence
- RM, and supersonic flows - EnoAMR, 2D). Finally, we

also use Tport AMR 2D which is a simple benchmark ker-
nel that solves the transport equation in 2D and is part of
the GrACE distribution. The applications use 5 levels of
factor 2 refinements in space and time. Regridding and
redistribution is performed every 4 time-steps on each
level. The applications are executed for 100 time-steps
and the granularity (minimum block dimension) is 2.

The evaluation is performed using software [32] that
simulates the execution of the Berger-Colella SAMR al-
gorithm. This software is driven by an application exe-
cution trace obtained from a single processor run. This
trace captures the state of the SAMR grid hierarchy for
the application at the regrid (refinement and coarsening)
step and is independent of any partitioning. The exper-
imental process allows the user to select the partitioner
to be used, the partitioning parameters (e.g. block size),
and the number of processors. The trace is then run
and the performance of the partitioning configuration at
each regrid step is computed using a metric [34] with the
components load balance, commuication, data migration,
and overheads.

Using the evaluation process described above, com-
munication is the sum of the amount of inter-processor
communication taken over all time-steps. Data migra-
tion is the sum of the total number of data points forced
to migrate as a result of re-partitioning, taken over all
time-steps.

The blocking methods, multiple blocking (MB) and
fractional blocking (FB) in Nature+Fable were used.
Multiple blocking creates @) blocks per processor and bi-
level. Fractional blocking generates exactly one block per
processor for the greater part of the procesors, and some
fractional blocks where needed in critical areas. The size
of the fractions is a multiple of u/@Q, where u is the “unit
load” that should be assigned to each processor for es-
tablishing perfect load balance. The parameter threshold
was set to 0, 10, 20, ..., 100 for each application and block-
ing scheme. Due to the relatively small trace-file grids,
the number of processors was 16.

5 Results

The effect of the proposed re-mapping algorithm with
threshold=0 for RM is presented in Table 1. Figure 3
(left) shows a more detailed view for FB. Figure 3 (right)
illustrates the impact of the parameter threshold for the
TP application. This result was typical so the plots for
the remaining applications are not shown. Figure 4 dis-
plays a summary of the best-achieved mapping for each
application and the impact on data migration.

Viewing the results, we may list a number of obser-
vations:

e The proposed re-mapping algorithm reduces the to-
tal communication volume with up to 30 percent
(see Figure 4).



Scheme || avg comm | max comm | avg migration | max migration
FB 24 14 -7 -5
MB 5 4 -3 -4

Table 1: RM2D: Results in percent improvement when using the re-mapping with threshold=0. FB=fractional
blocking and MB=multiple blocking. Note the significant improvement on average communication for FB and the
marginal improvement for MB.
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Figure 3: Left: RM: Results for the fractional blocking scheme with threshold=0. The blue is with mapping and red
is without. Note a 24 percent improvement of total communication. Right: Impact of the parameter threshold for
the application TP (result typical).

The positive impact of the proposed re-mapping
algorithm is greater for FB than for MB (see Fig-
ure 4).

The result of the parameter threshold on total com-

percent worse as an effect of the mapping (see Fig-
ure 4).

munication is predictable and “well-behaved” for 6 DISCUSSIOH’ COHCIUSIOH’ and Fu-
FB but unpredictable for MB (see Figure 3 (right)). ture Work
MB produced less communication than FB for the The proposed heuristic algorithm reduced inter-level

un-mapped cases for 3 out of 5 applications (see
Figure 4).

FB produced less communication than MB for the
mapped cases for all applications (see Figure 4).

FB struggles with data migration, and it gets a few
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communication substantially. The decrease is even larger
than the numbers for total communication presented, and
depends on the relative contribution to total communi-
cation volume. Since the complexity of our algorithm is
low, this decrease was relatively inexpensive. We draw
the conclusion that the algorithm could lower overall ex-
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Figure 4: Best-achieved mappings for the all applications (left) and the impact on data migration (right).



ecution times for many large SAMR applications, and
that, due to its parameterization, it would constitute a
natural component of the meta-partitioner.

To lower the complexity of the re-mapping algorithm,
the parameter threshold should be set as low as possible.
A lower setting means that more approximating box pairs
will be removed from the list of possible mappings. The
present results show that a fairly low setting is sufficient
for FB to generate good results. Since FB has the two
advantages over MB, viz. (1) it generates fewer boxes
per processor, and (2) it is significantly faster to com-
pute, the present results support choosing FB over MB
when data migration does not have a significant impact
on overall application execution time.

We also draw the conclusion that data migration has
to be improved for the FB scheme. Models incorporat-
ing a weighted metric for quality will be investigated fur-
ther in future research. A suggestion for incorporating
a penalty for the number of hops introduced by the re-
mapping algorithm is as follows (assume two boxes a and
b from the lists A and B):

1

lity = o * int t(a,b l—a)x ——
quality = a * intersect(a,b) + (1 — ) <+ nrOfHops

where 0 < a < 1 and € is a small number. This is
a simple linear model allowing for the weighting of com-
munication and data migration costs.

In this paper we proposed a fast heuristic algorithm
reducing the amount of inter-level communication in par-
allel SAMR applications partitioned by Nature+Fable.
Reducing this component is crucial to reduce execution
times for many SAMR applications. The algorithm was
particularly useful for the FB method, for which the
reduced amount of communication volume was estab-
lished reliably and fast. With the re-mapping algorithm,
Nature+Fable takes another step towards a complete im-
plementation of the meta-partitioner.
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